Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Sci Rep ; 14(1): 7723, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565894

RESUMO

Between 2016 and 2018, the Agriculture Research Center's Sakha Agriculture Research Station conducted two rounds of pedigree selection on a segregating population of cotton (Gossypium barbadense L.) using the F2, F3, and F4 generations resulting from crossing Giza 94 and Suvin. In 2016, the top 5% of plants from the F2 population were selected based on specific criteria. The superior families from the F3 generation were then selected to produce the F4 families in 2017, which were grown in the 2018 summer season in single plant progeny rows and bulk experiments with a randomized complete block design of three replications. Over time, most traits showed increased mean values in the population, with the F2 generation having higher Genotypic Coefficient of Variance (GCV) and Phenotypic Coefficient of Variance (PCV) values compared to the succeeding generations for the studied traits. The magnitude of GCV and PCV in the F3 and F4 generations was similar, indicating that genotype had played a greater role than the environment. Moreover, the mean values of heritability in the broad sense increased from generation to generation. Selection criteria I2, I4, and I5 were effective in improving most of the yield and its component traits, while selection criterion I1 was efficient in improving earliness traits. Most of the yield and its component traits showed a positive and significant correlation with each other, highlighting their importance in cotton yield. This suggests that selecting to improveone or more of these traits would improve the others. Families number 9, 13, 19, 20, and 21 were the best genotypes for relevant yield characters, surpassing the better parent, check variety, and giving the best values for most characters. Therefore, the breeder could continue to use these families in further generations as breeding genotypes to develop varieties with high yields and its components.


Assuntos
Fibra de Algodão , Gossypium , Melhoramento Vegetal , Cruzamentos Genéticos , Egito , Gossypium/genética , Fenótipo , Locos de Características Quantitativas
2.
BMC Plant Biol ; 24(1): 260, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594608

RESUMO

BACKGROUND: The finger lime (Citrus australasica), one of six Australian endemic citrus species shows a high natural phenotypic diversity and novel characteristics. The wide variation and unique horticultural features have made this lime an attractive candidate for domestication. Currently no haplotype resolved genome is available for this species. Here we present a high quality, haplotype-resolved reference genome for this species using PacBio HiFi and Hi-C sequencing. RESULTS: Hifiasm assembly and SALSA scaffolding resulted in a collapsed genome size of 344.2 Mb and 321.1 Mb and 323.2 Mb size for the two haplotypes. The nine pseudochromosomes of the collapsed genome had an N50 of 35.2 Mb, 99.1% genome assembly completeness and 98.9% gene annotation completeness (BUSCO). A total of 41,304 genes were predicted in the nuclear genome. Comparison with C. australis revealed that 13,661 genes in pseudochromosomes were unique in C. australasica. These were mainly involved in plant-pathogen interactions, stress response, cellular metabolic and developmental processes, and signal transduction. The two genomes showed a syntenic arrangement at the chromosome level with large structural rearrangements in some chromosomes. Genetic variation among five C. australasica cultivars was analysed. Genes related to defense, synthesis of volatile compounds and red/yellow coloration were identified in the genome. A major expansion of genes encoding thylakoid curvature proteins was found in the C. australasica genome. CONCLUSIONS: The genome of C. australasica present in this study is of high quality and contiguity. This genome helps deepen our understanding of citrus evolution and reveals disease resistance and quality related genes with potential to accelerate the genetic improvement of citrus.


Assuntos
Compostos de Cálcio , Citrus , Citrus/genética , Resistência à Doença/genética , Austrália , Óxidos , Filogenia
3.
Yi Chuan ; 46(3): 219-231, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632100

RESUMO

CRISPR/Cas9 gene editing technology, as a highly efficient genome editing method, has been extensively employed in the realm of animal husbandry for genetic improvement. With its remarkable efficiency and precision, this technology has revolutionized the field of animal husbandry. Currently, CRISPR/Cas9-based gene knockout, gene knock-in and gene modification techniques are widely employed to achieve precise enhancements in crucial production traits of livestock and poultry species. In this review, we summarize the operational principle and development history of CRISPR/Cas9 technology. Additionally, we highlight the research advancements utilizing this technology in muscle growth and development, fiber growth, milk quality composition, disease resistance breeding, and animal welfare within the livestock and poultry sectors. Our aim is to provide a more comprehensive understanding of the application of CRISPR/Cas9 technology in gene editing for livestock and poultry.


Assuntos
Sistemas CRISPR-Cas , Gado , Animais , Gado/genética , Aves Domésticas/genética , Edição de Genes/métodos , Técnicas de Introdução de Genes
4.
BMC Genomics ; 25(1): 284, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500079

RESUMO

Climate change is a threat to sustainable livestock production and livelihoods in the tropics. It has adverse impacts on feed and water availability, disease prevalence, production, environmental temperature, and biodiversity. Unravelling the drivers of local adaptation and understanding the underlying genetic variation in random mating indigenous livestock populations informs the design of genetic improvement programmes that aim to increase productivity and resilience. In the present study, we combined environmental, genomic, and phenotypic information of Ethiopian indigenous chickens to investigate their environmental adaptability. Through a hybrid sampling strategy, we captured wide biological and ecological variabilities across the country. Our environmental dataset comprised mean values of 34 climatic, vegetation and soil variables collected over a thirty-year period for 260 geolocations. Our biological dataset included whole genome sequences and quantitative measurements (on eight traits) from 513 individuals, representing 26 chicken populations spread along 4 elevational gradients (6-7 populations per gradient). We performed signatures of selection analyses ([Formula: see text] and XP-EHH) to detect footprints of natural selection, and redundancy analyses (RDA) to determine genotype-environment and genotype-phenotype-associations. RDA identified 1909 outlier SNPs linked with six environmental predictors, which have the highest contributions as ecological drivers of adaptive phenotypic variation. The same method detected 2430 outlier SNPs that are associated with five traits. A large overlap has been observed between signatures of selection identified by[Formula: see text]and XP-EHH showing that both methods target similar selective sweep regions. Average genetic differences measured by [Formula: see text] are low between gradients, but XP-EHH signals are the strongest between agroecologies. Genes in the calcium signalling pathway, those associated with the hypoxia-inducible factor (HIF) transcription factors, and sports performance (GALNTL6) are under selection in high-altitude populations. Our study underscores the relevance of landscape genomics as a powerful interdisciplinary approach to dissect adaptive phenotypic and genetic variation in random mating indigenous livestock populations.


Assuntos
Galinhas , Genômica , Humanos , Animais , Galinhas/genética , Genômica/métodos , Genótipo , Genoma , Seleção Genética , Polimorfismo de Nucleotídeo Único , Variação Genética
5.
Plant Cell Environ ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436101

RESUMO

A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.

6.
Front Plant Sci ; 15: 1355178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463563

RESUMO

Systemic acquired resistance (SAR) is an inducible disease resistance phenomenon in plant species, providing plants with broad-spectrum resistance to secondary pathogen infections beyond the initial infection site. In Arabidopsis, SAR can be triggered by direct pathogen infection or treatment with the phytohormone salicylic acid (SA), as well as its analogues 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH). The SA receptor non-expressor of pathogenesis-related protein gene 1 (NPR1) protein serves as a key regulator in controlling SAR signaling transduction. Similarly, in common wheat (Triticum aestivum), pathogen infection or treatment with the SA analogue BTH can induce broad-spectrum resistance to powdery mildew, leaf rust, Fusarium head blight, and other diseases. However, unlike SAR in the model plant Arabidopsis or rice, SAR-like responses in wheat exhibit unique features and regulatory pathways. The acquired resistance (AR) induced by the model pathogen Pseudomonas syringae pv. tomato strain DC3000 is regulated by NPR1, but its effects are limited to the adjacent region of the same leaf and not systemic. On the other hand, the systemic immunity (SI) triggered by Xanthomonas translucens pv. cerealis (Xtc) or Pseudomonas syringae pv. japonica (Psj) is not controlled by NPR1 or SA, but rather closely associated with jasmonate (JA), abscisic acid (ABA), and several transcription factors. Furthermore, the BTH-induced resistance (BIR) partially depends on NPR1 activation, leading to a broader and stronger plant defense response. This paper provides a systematic review of the research progress on SAR in wheat, emphasizes the key regulatory role of NPR1 in wheat SAR, and summarizes the potential of pathogenesis-related protein (PR) genes in genetically modifying wheat to enhance broad-spectrum disease resistance. This review lays an important foundation for further analyzing the molecular mechanism of SAR and genetically improving broad-spectrum disease resistance in wheat.

7.
3 Biotech ; 14(2): 44, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38249355
8.
Theriogenology ; 217: 151-158, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277797

RESUMO

This study evaluated the effects of antral follicle count (AFC) in female cattle on offspring characteristics. Recently calved multiparous Bos indicus cows (Nelore; n = 222) were evaluated using ultrasonography on random days of their estrous cycle to determine the AFC and were classified into "low" (≤15 follicles), "intermediate" (≥16 and ≤ 29 follicles), and "high" (≥30 follicles) AFC groups. Weight and scrotal circumference (SC) of male offspring from these cows (n = 127) were determined from 20 to 27 months, and the data were added to a genetic evaluation program (economic total genetic merit, MGTe and TOP value) that uses the kinship matrix to evaluate the genetic relationship between animals. The AFC of female offspring from these cows (n = 95) was evaluated to analyze the relationship between the AFC of mothers and daughters. The effects of maternal AFC on the genetic merit of male and female offspring were analyzed using GLIMMIX and GLM, respectively. Correlations were assessed using the Pearson's coefficient. Male offspring of cows with high AFC had superior MGTe (P = 0.005) and TOP values (P = 0.01) than those from cows with low AFC. Additionally, the AFC of mothers was positively correlated with MGTe (R = 0.33; P < 0.0001) and negatively correlated with TOP values (R = -0.32; P < 0.0001). The SC (P = 0.01), but not body weight of the offspring (P = 0.46) was affected by maternal AFC. The daughters' AFC were correlated (R = 0.29; P = 0.004) with mothers' AFC and were influenced by maternal (P = 0.05) but not paternal (P = 0.77) effect. In conclusion, cows with high AFC produced males with greater MGTe, superior TOP values and higher SC. Maternal AFC did not influence the weight of male offspring but was correlated with the AFC of daughters.


Assuntos
Ciclo Estral , Folículo Ovariano , Masculino , Bovinos/genética , Feminino , Animais , Folículo Ovariano/diagnóstico por imagem , Ultrassonografia
9.
Int J Radiat Biol ; 100(2): 151-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37755121

RESUMO

PURPOSE: The genus Mentha spp. is an aromatic herb from the family 'Lamiaceae'. It is extensively predominant in temperate and sub-temperate regions of the world. The essential oil of this species is enriched with broad aroma constituents extensively utilized in food, beverages, flavor, cosmetics, perfumery, and pharmaceutical enterprises. With the global menthol market size estimated to be worth USD 765 million in 2022, India (accompanied by China and Brazil) is the world's primary manufacturer, consumer, and exporter of Mentha oil. Despite prominent global demand, the crucial bottleneck in mint cultivation is the need for more superior commercial cultivars. Predominant vegetative propagation mode with difficulties in manual emasculation, differential blooming times, sterile/sub-sterile hybrids, and low seed viability are the primary containment in creating genetic variability by classical breeding approaches. Therefore, genetic complications encountered in conventional breeding have led the breeders to apply mutation breeding as an alternative crop improvement approach in Mentha spp. These attempts at mutation breeding have produced some distinctive mutants as genetic pools for plant breeding programs, and some novel mutant mint cultivars have been made available for commercial cultivation. CONCLUSIONS: The prime strategy in mutation-based breeding has proven an adept means of encouraging the expression of recessive genes and producing new genetic variations. The present review comprises a significant contribution of mutation breeding approaches in the development of mutant mint species and its effects on physiological variation, photosynthetic pigment, essential oil content and composition, phytochemical-mediated defense response, pathogen resistivity, and differential expression of genes related to terpenoid biogenesis. Development and diversification have led to the release of varieties, namely Todd's Mitcham, Murray Mitcham, Pranjal, Tushar, and Kukrail in M. piperita L., Mukta, and Pratik in M. cardiaca Baker, Neera in M. spicata L., Kiran in M. citrata Ehrh., and Rose mint in M. arvensis L. that have revolutionized and uplifted mint cultivation leading to economic gain by the farmers and entrepreneurs.


Assuntos
Mentha , Óleos Voláteis , Mentha/genética , Mentha/metabolismo , Mentol/metabolismo , Extratos Vegetais , Óleos Voláteis/metabolismo , Genótipo
10.
Front Plant Sci ; 14: 1237099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053771

RESUMO

Modern megacities offer convenient lifestyles to their citizens. However, agriculture is becoming increasingly vulnerable, especially during unexpected public health emergencies such as pandemics. Fortunately, the adaptability of terrace vegetables cultivation presents an opportunity to grow horticultural crops in residential spaces, bringing numerous benefits to citizens, including enhanced nutrition and recreational engagement in the cultivation process. Although certain planting skills and equipment have been developed, the citizens tend to sow some seeds with unknown pedigree, it is rare to find new plant varieties specifically bred for cultivation as terrace vegetables. To expand the genetic basis of new breeding materials, elite parents, and varieties (pre-breeding) for terrace cultivation, this review not only discusses the molecular breeding strategy for the identification, creation, and application of rational alleles for improving horticultural characteristics including plant architecture, flavor quality, and ornamental character, but also assesses the potential for terrace cultivation of some representative vegetable crops. We conclude that the process of pre-breeding specifically for terrace cultivation environments is vital for generating a genetic basis for urban terrace vegetable crops.

11.
J Zhejiang Univ Sci B ; 24(12): 1069-1092, 2023 Jul 03.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38057266

RESUMO

Abiotic stresses, predominately drought, heat, salinity, cold, and waterlogging, adversely affect cereal crops. They limit barley production worldwide and cause huge economic losses. In barley, functional genes under various stresses have been identified over the years and genetic improvement to stress tolerance has taken a new turn with the introduction of modern gene-editing platforms. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a robust and versatile tool for precise mutation creation and trait improvement. In this review, we highlight the stress-affected regions and the corresponding economic losses among the main barley producers. We collate about 150 key genes associated with stress tolerance and combine them into a single physical map for potential breeding practices. We also overview the applications of precise base editing, prime editing, and multiplexing technologies for targeted trait modification, and discuss current challenges including high-throughput mutant genotyping and genotype dependency in genetic transformation to promote commercial breeding. The listed genes counteract key stresses such as drought, salinity, and nutrient deficiency, and the potential application of the respective gene-editing technologies will provide insight into barley improvement for climate resilience.


Assuntos
Edição de Genes , Hordeum , Sistemas CRISPR-Cas , Hordeum/genética , Produtos Agrícolas/genética , Estresse Fisiológico/genética
12.
Arch Microbiol ; 206(1): 13, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38070036

RESUMO

The development of fast-growing/short cropping period oyster mushroom (Pleurotus species) having good taste is one of the important needs of mushroom growers. Pleurotus djamor strain woody1, collected recently from the dead wood, has a short cropping period of 30 days but a moderately acceptable taste. One of the cultivated Pleurotus spp., P. djamor strain MDU1, has good taste but a long cropping period of 47 days. Thus, genetic improvement of P. djamor was carried out between these two strains by pairing monokaryons (anastomosis) to develop elite hybrid strains having a short cropping period and good taste. Monokaryons of parental strains showed variation in time required for germination; i.e., basidiospores of P. djamor strain woody1 germinated and developed monokaryotic colonies in 6 days, whereas that of P. djamor strain MDU1 developed monokaryotic colonies in 8 days of incubation. In addition, variation in the growth rate and morphology of the monokaryotic mycelia of both parental strains was noticed, and fast-growing monokaryons were selected for anastomosis. Out of 60 crosses made between mycelia of monokaryotic isolates of both parental strains, 20 crosses showed clamp connection, indicating that they were successful crosses. Out of 20 hybrids, two hybrid strains, viz., W2M4 and W4M4, exhibited higher yields than their parents. They exhibited the short cropping period trait, good taste attribute, and some specific volatile metabolites. This study showed that the developed two hybrid varieties, having desirable agronomic traits, could be used in mushroom farming to increase the mushroom grower's income.


Assuntos
Pleurotus , Pleurotus/genética , Hibridização de Ácido Nucleico
13.
Front Plant Sci ; 14: 1340455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146271
14.
J Adv Vet Anim Res ; 10(3): 378-384, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37969797

RESUMO

Objectives: This study aimed to measure the production potential of selected Pitalah and Bayang male ducks and their first generation. Materials and Methods: A total of 100 Pitalah and 100 Bayang 1-day-old ducks (40 males, 60 females) were obtained from local farmers and reared for 32-34 weeks. Twenty male ducks were selected as parental ducks based on their body weight (BW) and feed conversion ratio (FCR) at weeks 8 and 12. Forty female layer ducks were selected as parental ducks based on their blood cholesterol levels. Selected parental ducks were allowed to reproduce, and the ducklings were reared for 8 weeks before their BW, BW gain (BWG), feed intake, FCR, carcass weight percentage, abdominal fat percentage, and income over feed and duck cost (IOFC) ratio were measured. The data were subjected to a t-test. Results: Pitalah parental and first-generation ducks had better production performance and blood lipid profiles than Bayang ducks (p < 0.05). Based on the IOFC ratio, rearing Pitalah ducks for 8 weeks for meat production was more profitable and beneficial as a community economic resource. Conclusion: The selection of Pitalah and Bayang ducks was worth pursuing, as the G1 of both Pitalah and Bayang ducks had better production performance in terms of their BW, BWG, and FCR. Based on the IOFC values, raising Pitalah ducks for 8 weeks for meat production would be more economically beneficial.

15.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003431

RESUMO

The CRISPR genome editing technology is a crucial tool for enabling revolutionary advancements in plant genetic improvement. This review shows the latest developments in CRISPR/Cas9 genome editing system variants, discussing their benefits and limitations for plant improvement. While this technology presents immense opportunities for plant breeding, it also raises serious biosafety concerns that require careful consideration, including potential off-target effects and the unintended transfer of modified genes to other organisms. This paper highlights strategies to mitigate biosafety risks and explores innovative plant gene editing detection methods. Our review investigates the international biosafety guidelines for gene-edited crops, analyzing their broad implications for agricultural and biotechnology research and advancement. We hope to provide illuminating and refined perspectives for industry practitioners and policymakers by evaluating CRISPR genome enhancement in plants.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Contenção de Riscos Biológicos , Melhoramento Vegetal , Produtos Agrícolas/genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética
16.
Genomics ; 115(6): 110745, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37977332

RESUMO

Grain qualities including milling quality, appearance quality, eating and cooking quality, and nutritional quality are important indicators in rice breeding. Significant achievements in genetic improvement of rice quality have been made. In this study, we analyzed the variation patterns of 16 traits in 1570 rice varieties and found significant improvements in appearance quality and eating and cooking quality, particularly in hybrid rice. Through genome-wide association study and allelic functional nucleotide polymorphisms analysis of quality trait genes, we found that ALK, FGR1, FLO7, GL7/GW7, GLW7, GS2, GS3, ONAC129, OsGRF8, POW1, WCR1, and Wx were associated with the genetic improvement of rice quality traits in Southern China. Allelic functional nucleotide polymorphisms analysis of 13 important rice quality genes, including fragrance gene fgr, were performed using the polymerase chain reaction amplification refractory mutation system technology. The results showed that Gui516, Gui569, Gui721, Ryousi, Rsimiao, Rbasi, and Yuehui9802 possessed multiple superior alleles. This study elucidates the phenotypic changes and molecular basis of key quality traits of varieties in Southern China. The findings will provide guidance for genetic improvement of rice quality and the development of new varieties.


Assuntos
Oryza , Locos de Características Quantitativas , Oryza/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Nucleotídeos
17.
Front Plant Sci ; 14: 1248278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849846

RESUMO

Tree height (H) and stem diameter at breast height (DBH) (H-D) relationship is correlated with timber yield and quality as well as stability of forest and is crucial in forest management and genetic breeding. It is influenced by not only environmental factors such as site quality and climate factors but also genetic control that is mostly neglected. A dataset of H and DBH of 25 provenances of Betula alnoides Buch.-Ham. ex D. Don at four sites was used to model the H-D relationship. The dummy variable nonliner mixed-effect equations were applied to evaluate the effects of sites and provenances on variations of the H-D relationship and to select superior provenances of B. alnoides. Weibull equation was selected as the base model for the H-D relationship. The sites affected asymptotes of the H-D curves, and the provenance effect on asymptotes of the H-D curves varied across sites. Taking above-average DBH and lower asymptote of the H-D curves as indicators, five excellent provenances were screened out at each site with a rate of 20%. Their selection gains of individual volume ranged from 1.99% to 29.81%, and their asymptote parameter (kj) and H-D ratio were 7.17%-486.05% and 3.07-4.72% lower than the relevant total means at four sites, respectively. Genetic selection based on the H-D relationship could promote selection efficiency of excellent germplasms and was beneficial for the large-sized timber production of B. alnoides.

18.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 3936-3947, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877383

RESUMO

Traditional pig breeding has a long cycle and high cost, and there is an urgent need to use new technologies to revitalize the pig breeding industry. The recently emerged CRISPR/Cas9 genome editing technique shows great potential in pig genetic improvement, and has since become a research hotspot. Base editor is a new base editing technology developed based on the CRISPR/Cas9 system, which can achieve targeted mutation of a single base. CRISPR/Cas9 technology is easy to operate and simple to design, but it can lead to DNA double strand breaks, unstable gene structures, and random insertion and deletion of genes, which greatly restricts the application of this technique. Different from CRISPR/Cas9 technique, the single base editing technique does not produce double strand breaks. Therefore, it has higher accuracy and safety for genome editing, and is expected to advance the pig genetic breeding applications. This review summarized the working principle and shortcomings of CRISPR/Cas9 technique, the development and advantages of single base editing, the principles and application characteristics of different base editors and their applications in pig genetic improvement, with the aim to facilitate genome editing-assisted genetic breeding of pig.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Suínos/genética , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla
19.
20.
Mol Plant ; 16(10): 1564-1589, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37671604

RESUMO

Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Mudança Climática , Plantas , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA